Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Bioeng Biotechnol ; 11: 1010679, 2023.
Article in English | MEDLINE | ID: covidwho-2314768

ABSTRACT

Introduction: This study aimed to develop an individualized artificial intelligence model to help radiologists assess the severity of COVID-19's effects on patients' lung health. Methods: Data was collected from medical records of 1103 patients diagnosed with COVID-19 using RT- qPCR between March and June 2020, in Hospital Madrid-Group (HM-Group, Spain). By using Convolutional Neural Networks, we determine the effects of COVID-19 in terms of lung area, opacities, and pulmonary air density. We then combine these variables with age and sex in a regression model to assess the severity of these conditions with respect to fatality risk (death or ICU). Results: Our model can predict high effect with an AUC of 0.736. Finally, we compare the performance of the model with respect to six physicians' diagnosis, and test for improvements on physicians' performance when using the prediction algorithm. Discussion: We find that the algorithm outperforms physicians (39.5% less error), and thus, physicians can significantly benefit from the information provided by the algorithm by reducing error by almost 30%.

2.
Sci Rep ; 12(1): 9387, 2022 06 07.
Article in English | MEDLINE | ID: covidwho-1878544

ABSTRACT

The main objective of this work is to develop and evaluate an artificial intelligence system based on deep learning capable of automatically identifying, quantifying, and characterizing COVID-19 pneumonia patterns in order to assess disease severity and predict clinical outcomes, and to compare the prediction performance with respect to human reader severity assessment and whole lung radiomics. We propose a deep learning based scheme to automatically segment the different lesion subtypes in nonenhanced CT scans. The automatic lesion quantification was used to predict clinical outcomes. The proposed technique has been independently tested in a multicentric cohort of 103 patients, retrospectively collected between March and July of 2020. Segmentation of lesion subtypes was evaluated using both overlapping (Dice) and distance-based (Hausdorff and average surface) metrics, while the proposed system to predict clinically relevant outcomes was assessed using the area under the curve (AUC). Additionally, other metrics including sensitivity, specificity, positive predictive value and negative predictive value were estimated. 95% confidence intervals were properly calculated. The agreement between the automatic estimate of parenchymal damage (%) and the radiologists' severity scoring was strong, with a Spearman correlation coefficient (R) of 0.83. The automatic quantification of lesion subtypes was able to predict patient mortality, admission to the Intensive Care Units (ICU) and need for mechanical ventilation with an AUC of 0.87, 0.73 and 0.68 respectively. The proposed artificial intelligence system enabled a better prediction of those clinically relevant outcomes when compared to the radiologists' interpretation and to whole lung radiomics. In conclusion, deep learning lesion subtyping in COVID-19 pneumonia from noncontrast chest CT enables quantitative assessment of disease severity and better prediction of clinical outcomes with respect to whole lung radiomics or radiologists' severity score.


Subject(s)
COVID-19 , Deep Learning , Artificial Intelligence , COVID-19/diagnostic imaging , Humans , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL